作者:Mike May / 文 李楠 / 譯 來源: 發(fā)布時間:2019-9-5 14:52:22
大數(shù)據(jù)轉(zhuǎn)化:蛋白質(zhì)組學(xué)的挑戰(zhàn)

 
人體中有大約20000個蛋白質(zhì)編碼基因,能翻譯相應(yīng)數(shù)量的蛋白質(zhì)。然而,通過翻譯后修飾會產(chǎn)生更多形態(tài)的蛋白質(zhì)。截至2018年4月4日,人類蛋白質(zhì)組圖譜包含30057種蛋白質(zhì)。將眾多的分子與質(zhì)譜(MS)這樣的分析技術(shù)相結(jié)合,探索其微妙的聯(lián)系,會產(chǎn)生海量的“大數(shù)據(jù)”。由于獲得的蛋白質(zhì)組復(fù)雜信息數(shù)據(jù)量過于龐大,通常需要很多科研人員協(xié)作才能解讀某一個數(shù)據(jù)集的信息。
 
雖然這些數(shù)據(jù)集無論從體量還是復(fù)雜度看都是驚人的,但共享在將來仍是可預(yù)期的。位于威斯康星大學(xué)麥迪遜分校的國立衛(wèi)生研究院(NIH)國家復(fù)雜系統(tǒng)定量生物學(xué)中心主任Joshua Coon說:“作者通常主動的或者是根據(jù)要求將蛋白質(zhì)組學(xué)研究的原始數(shù)據(jù)發(fā)送到相應(yīng)數(shù)據(jù)庫中。但在10年前,情況并非如此,人們的態(tài)度已經(jīng)在改變了。”蛋白質(zhì)組學(xué)界甚至整個學(xué)術(shù)界都意識到數(shù)據(jù)透明度提高了研究人員之間的信任程度,即使身處不同領(lǐng)域的人也是如此。
 
數(shù)據(jù)共享的困難
 
在馬薩諸塞州比勒利卡的布魯克公司蛋白質(zhì)組學(xué)業(yè)務(wù)開發(fā)副總裁Gary Kruppa表示,現(xiàn)在產(chǎn)生蛋白質(zhì)相關(guān)的大數(shù)據(jù)比以往任何時候都容易,但以最有效的方式分享數(shù)據(jù)卻很難。研究人員可以在幾天內(nèi)獲取數(shù)以TB計的數(shù)據(jù),但數(shù)據(jù)的轉(zhuǎn)移和可視化卻很難。甚至儲存一個月積累的數(shù)據(jù)都很困難。
 
海量數(shù)據(jù)共享的難點依然在于缺乏有效的方法,而且很難提供足夠的實驗和生物學(xué)相關(guān)信息。如果研究人員只想分享蛋白質(zhì)組學(xué)實驗的原始數(shù)據(jù),以及與數(shù)據(jù)相關(guān)的一些背景和結(jié)果,那是非常簡單的,位于英國劍橋的歐洲分子生物學(xué)實驗室——歐洲生物信息學(xué)研究所(EMBL—EBI)蛋白質(zhì)組學(xué)團(tuán)隊負(fù)責(zé)人Juan Antonio Vizcaíno解釋說。
 
越來越多的科研人員參與到數(shù)據(jù)共享中,隨之而來的挑戰(zhàn)也在不斷增加。例如,僅將信息轉(zhuǎn)儲到數(shù)據(jù)庫是不夠的。“必須確保上傳的數(shù)據(jù)質(zhì)量足夠高,以便其他同行能夠使用這些數(shù)據(jù),”加利福尼亞州圣何塞市賽默飛世爾科技公司蛋白質(zhì)組學(xué)解決方案全球營銷總監(jiān)Andreas Huhmer說。此外,除非數(shù)據(jù)采用某種標(biāo)準(zhǔn)格式,否則數(shù)據(jù)上傳到數(shù)據(jù)庫以后無法方便地進(jìn)行檢索。
 
分析數(shù)據(jù)的方法也會影響從中得出的結(jié)論。“目前有太多種分析蛋白質(zhì)組學(xué)數(shù)據(jù)的方法,因此對數(shù)據(jù)的解釋存在主觀性,”澳大利亞帕克瓦拉的沃爾特和愛麗莎霍爾醫(yī)學(xué)研究所的系統(tǒng)生物學(xué)和個性化醫(yī)學(xué)部門負(fù)責(zé)人Andrew Webb解釋說。
 
其他專家也贊同數(shù)據(jù)分析仍然是蛋白質(zhì)組學(xué)研究人員面臨的挑戰(zhàn)之一。“我們?nèi)绾斡行У貙⒃紨?shù)據(jù)轉(zhuǎn)化為有意義的東西,仍然是要克服的第一個難題,就算是在同一個實驗室里也一樣。”英國曼徹斯特沃特世公司健康科學(xué)主任James Langridge指出。
 
即使科研人員們就數(shù)據(jù)的標(biāo)準(zhǔn)化格式和分析方法達(dá)成一致,還是存在很多需要解決的問題。首先,必須根據(jù)需要更新數(shù)據(jù)標(biāo)準(zhǔn);其次,即使是共享最大的蛋白質(zhì)組數(shù)據(jù)集也會出現(xiàn)不足。“為了盡量多的從蛋白質(zhì)組學(xué)數(shù)據(jù)集中獲得科學(xué)知識,而且這些知識應(yīng)該與其基因組和轉(zhuǎn)錄組信息進(jìn)行系統(tǒng)化的整合,”位于馬里蘭州羅克維爾市的美國國家癌癥研究所癌癥臨床蛋白質(zhì)組學(xué)研究辦公室主任Henry Rodriguez說,“通過將蛋白質(zhì)組學(xué)與基因組學(xué)、蛋白質(zhì)基因組學(xué)等信息進(jìn)行整合,這種多組學(xué)方法可以獲得更多新的生物學(xué)知識,這是單一組學(xué)數(shù)據(jù)分析所不能比擬的。”
 
科學(xué)研究的尺度
 
蛋白質(zhì)組學(xué)大數(shù)據(jù)集共享的價值在于它們可能帶來衛(wèi)生保健等方面的改善。例如,Rodriguez說:“制藥公司將獲益于更深入地了解疾病,從而開發(fā)出更有效的藥物。”
 
同樣,蛋白質(zhì)組學(xué)可以與其他工具結(jié)合使用,例如CRISPR等基因編輯技術(shù)。“編輯生物系統(tǒng)并觀察其表型確實非常驚人,”Langridge說。用基因編輯工具調(diào)整系統(tǒng),并分析其結(jié)果將有助于科研人員揭示特定蛋白質(zhì)的功能。
 
就目前來說,像EMBL-EBI的PRoteomics IDEntifications(PRIDE)這種專門為數(shù)據(jù)共享所開發(fā)的數(shù)據(jù)庫可能是最有幫助的。它收錄了來自50多個國家的超過8400個蛋白質(zhì)組學(xué)數(shù)據(jù)集,代表了近80000個獲取蛋白質(zhì)組學(xué)數(shù)據(jù)的測試,所有數(shù)據(jù)總量大約為400TB。
 
洛桑的瑞士生物信息學(xué)研究所開發(fā)了neXtProt,這是另一個蛋白質(zhì)知識庫,它記錄了超過20000種蛋白質(zhì)和近20萬種翻譯后修飾數(shù)據(jù)。
 
“最著名的蛋白質(zhì)知識庫是UniProt,當(dāng)然它不僅僅關(guān)注人類蛋白質(zhì),”Vizcaíno說。像這樣的數(shù)據(jù)庫可以收錄各種新的科學(xué)知識。“你可以試著找出結(jié)合不同實驗室數(shù)據(jù)集的方法,或?qū)ふ腋邉?chuàng)新性的方法來分析這些數(shù)據(jù),”Vizcaíno說。“通常,對蛋白質(zhì)組學(xué)數(shù)據(jù)的分析是為了回答一組科學(xué)問題,當(dāng)然也可以用其他方法分析這些數(shù)據(jù)。”因此,如果有人提出一種探索現(xiàn)有數(shù)據(jù)的新方法,那么其結(jié)果可能會揭示新的生物學(xué)知識。
 
除此之外,還有更多關(guān)于蛋白質(zhì)的數(shù)據(jù)信息有待確定。正如Huhmer所指出的那樣,“大約有15000個已知的蛋白質(zhì)家族。”同一個家族中的蛋白質(zhì)都存在結(jié)構(gòu)相似性。根據(jù)Huhmer的說法,研究人員已經(jīng)研究了一些家族蛋白的結(jié)構(gòu),并用X射線晶體學(xué)等技術(shù)直接測量了大約4500個家族;通過計算機(jī)模擬了另外4500個(其中只有大約1000個具有高可信度);他們還不知道其余6000多個家族蛋白的結(jié)構(gòu)。
 
技術(shù)的進(jìn)步不斷給研究人員提供更多的蛋白質(zhì)組學(xué)數(shù)據(jù)。例如,Huhmer提到多種無標(biāo)定量的MS方法可用于每天產(chǎn)生100萬個數(shù)據(jù)點。此外,結(jié)合MS與冷凍電鏡之類的結(jié)構(gòu)生物學(xué)技術(shù),可以確定蛋白質(zhì)的三維形狀,從而用來分析一些現(xiàn)在未被描述的結(jié)構(gòu)。“因此,技術(shù)的演化揭示了更多蛋白質(zhì)結(jié)構(gòu)的信息,并推動了這個領(lǐng)域的更多研究。”
 
值得高興的是,一旦蛋白質(zhì)家族中某一個成員的結(jié)構(gòu)被解析,隨后就可以通過計算生物學(xué)模擬該家族中的其他成員結(jié)構(gòu)。“這樣,蛋白質(zhì)數(shù)據(jù)分析結(jié)果會呈指數(shù)增長,”Huhmer解釋道。事實上,計算生物學(xué)在推動蛋白質(zhì)組學(xué)數(shù)據(jù)分析和共享方面發(fā)揮著廣泛的作用。
 
技術(shù)開發(fā)團(tuán)隊和科研課題組的密切協(xié)作能夠使科研人員更容易共享蛋白質(zhì)組學(xué)數(shù)據(jù),并促進(jìn)項目合作。例如,德國慕尼黑工業(yè)大學(xué)(TUM)、柏林的JPT Peptide Technologies公司(JPT)、瓦爾多夫的SAP公司和賽默飛世爾科技公司創(chuàng)建了一個聯(lián)盟,幫助科學(xué)家將蛋白質(zhì)組學(xué)數(shù)據(jù)進(jìn)行轉(zhuǎn)化,并應(yīng)用到基礎(chǔ)和醫(yī)學(xué)研究。用戶在這個叫做ProteomeTools的在線數(shù)據(jù)庫中可免費(fèi)獲得該聯(lián)盟提交的研究數(shù)據(jù)。
 
找出數(shù)據(jù)間的聯(lián)結(jié)
 
ProteomeTools聯(lián)盟的例子清楚地表明,科研人員和機(jī)構(gòu)需要開展新形式的合作,并共享大型蛋白質(zhì)組學(xué)數(shù)據(jù)集。當(dāng)然,當(dāng)科研人員們收集了如此多的數(shù)據(jù),而實驗和實驗結(jié)果之間存在多種可能的聯(lián)結(jié),于是他們比以往更加專注于新的計算工具的開發(fā)。
 
“我認(rèn)為人工智能,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)是能夠激勵研究者們共享大數(shù)據(jù)的技術(shù)領(lǐng)域。這些技術(shù)需要大量數(shù)據(jù),因此,一定程度上會推動研究界分享大數(shù)據(jù),以確保他們的持續(xù)發(fā)展。”Rodriguez指出。
 
雖然Rodriguez欣喜于這些工具將輔助科研人員發(fā)現(xiàn)那些隱藏的聯(lián)結(jié),并可能進(jìn)一步催生出新的科學(xué)假設(shè)與研究,但他補(bǔ)充說,“我們必須謹(jǐn)記它不僅僅是關(guān)于技術(shù)本身,也是人們對數(shù)據(jù)分析方法的進(jìn)一步解釋,審查,挑戰(zhàn)與質(zhì)疑的過程。”
 
正如Rodriguez解釋的那樣,“這些計算系統(tǒng)需要更多的合作和開放性科學(xué)數(shù)據(jù),并以新的方式創(chuàng)造價值。”他列舉了三個這種持續(xù)和廣泛合作的例子:國家癌癥研究所(NCI)的臨床蛋白質(zhì)組學(xué)腫瘤分析聯(lián)盟(CPTAC)計劃;NCI、國防部和退伍軍人事務(wù)部合作的應(yīng)用蛋白基因組學(xué)學(xué)習(xí)和成果共享組織網(wǎng)絡(luò)(APOLLO);國際癌癥蛋白質(zhì)組聯(lián)盟(ICPC),它們都“鼓勵通過數(shù)據(jù)共享向公眾提供數(shù)據(jù)”。
 
為了進(jìn)一步發(fā)揮合作的效力,分析平臺應(yīng)該具備簡化數(shù)據(jù)采集和共享的技術(shù)。在這些方面,沃特世公司開發(fā)了一種獨(dú)立于數(shù)據(jù)的串聯(lián)MS數(shù)據(jù)采集方法——SONAR。Langridge說:“整個思路的核心是能夠以穩(wěn)定一致的方式獲取蛋白質(zhì)組學(xué)數(shù)據(jù)”。對于每個測試樣品,該系統(tǒng)都將獲取肽段和蛋白質(zhì)的定量信息。Langridge解釋到,“不僅僅是鑒定這些蛋白質(zhì),而是在不同的樣品中收集它們的豐度值。”此外,用戶無需在測試開始之前決定是否要采集數(shù)據(jù),因為SONAR會采集所有數(shù)據(jù)。“靶向?qū)嶒灥奶魬?zhàn)在于,你需要預(yù)先確定你所關(guān)注的東西。但是你也不清楚是否存在脫靶效應(yīng),或者是否有其他的生化途徑參與其中,”Langridge說。
 
收集如此多的數(shù)據(jù),并以研究人員們可共享、可重新訪問的方式存儲,將會提高數(shù)據(jù)集的可持續(xù)價值。“許多已經(jīng)發(fā)表的研究果可能再也沒有被關(guān)注過,”Kruppa指出,“如果數(shù)據(jù)無法輕易共享,則無法驗證數(shù)據(jù)。”因此,創(chuàng)建數(shù)據(jù)共享工具可以使得新舊結(jié)果互相得到印證。“另外,這些工具讓你可以分析來自其他科研人員的數(shù)據(jù),并對你的研究進(jìn)行更有效更廣泛的比較。”
 
以前獲得的數(shù)據(jù)集還可以幫助科學(xué)家們開發(fā)工具。例如,可以在現(xiàn)有數(shù)據(jù)集上測試新的分析工具,并在需要時進(jìn)行調(diào)整。Kruppa指出,“許多研究人員正致力于開發(fā)包含人工智能分析技術(shù)的新工具。只要既有的數(shù)據(jù)可以輕松共享,這些工具就可以在以前的數(shù)據(jù)集上進(jìn)行驗證。”
 
數(shù)據(jù)是否易于共享取決于其格式。為此,布魯克開發(fā)了捕獲型離子淌度——飛行時間質(zhì)譜(timsTOF Pro MS/MS)平臺,以獲得格式通用的數(shù)據(jù)。Kruppa說:“該儀器將采集大量數(shù)據(jù),我們需要使其易于使用。如果沒有這種數(shù)據(jù)兼容性,即使是最先進(jìn)的計算工具也會在嘗試數(shù)據(jù)集比較時遇到障礙。”
 
查看共享內(nèi)容
 
這一點已經(jīng)很清晰了:蛋白質(zhì)組學(xué)專家們并不缺乏數(shù)據(jù)。相反,他們中的大多數(shù)人可能會同意Coon的觀點:“我們被數(shù)據(jù)淹沒了。”
 
Coon指出,最好是從同一個實驗中收集所有原始MS數(shù)據(jù)并對其進(jìn)行批量化處理。“大家都希望以同樣的方式收集和分析所有的樣本,”他說。
 
完成這項工作,特別是分析部分,往往需要科研人員們開發(fā)自己的工具。例如,Coon聘請了一名數(shù)據(jù)分析專家,用兩年時間構(gòu)建了一個可視化工具。他們的研究團(tuán)隊需要一種方法來分析、組織并結(jié)合項目產(chǎn)生的所有蛋白質(zhì)組學(xué)、脂質(zhì)組學(xué)和代謝組學(xué)數(shù)據(jù)集。因此,Coon和他的同事將他們的數(shù)據(jù)查看器集成到了一個網(wǎng)站中。
 
“我們首先將一個酵母研究項目的相關(guān)數(shù)據(jù)進(jìn)行了這樣的展示,以方便人們使用這些數(shù)據(jù)。現(xiàn)在我們?yōu)槊總項目創(chuàng)建一個這樣的網(wǎng)站。”有了Coon的查看器,他們不再需要給訪問者提供一個8000列的Excel電子表格,其他研究人員也可以快速地對不同樣本來源的數(shù)據(jù)就行比較。“他們可以非?焖俚貙(shù)據(jù)進(jìn)行查詢。”Coon解釋。
 
雖然Coon說他還沒有發(fā)現(xiàn)很多與他的辦法類似的例子,但他發(fā)現(xiàn)這有助于他的團(tuán)隊和其他同行從數(shù)據(jù)集中提取有用的生物信息,因為他們可以通過查詢它,而非常快速地比較樣本和數(shù)據(jù)點。
 
“大多數(shù)實驗室需要弄清楚當(dāng)他們獲得如此多的數(shù)據(jù)之后,如何從原始MS文件中獲得有用的信息。他們也許有自己的工具去解決這個問題,”Coon指出。“但目前還沒有那么多脫穎而出的選項供大家使用。人們也不像重視硬件那樣重視軟件。”
 
然而,為了共享大型蛋白質(zhì)組學(xué)數(shù)據(jù)集,必須持續(xù)優(yōu)化硬件和軟件。此外,科研人員必須保持?jǐn)?shù)據(jù)質(zhì)量。Rodriguez表示,雖然“一提起大數(shù)據(jù),數(shù)據(jù)的大小就會跳出來。但從獲取知識的機(jī)會來看,從大數(shù)據(jù)中汲取的信息內(nèi)容和質(zhì)量是我理解的大之所在。”■
 
(譯者李楠是中國科學(xué)院深圳先進(jìn)技術(shù)研究院的副研究員。)
Mike May 是佛羅里達(dá)州的自由撰稿人和編輯。
 鳴謝:“原文由美國科學(xué)促進(jìn)會(www.aaas.org)發(fā)布在2018 年6 月14 日《科學(xué)》雜志”。官方英文版請見https://www.sciencemag.org/features/2018/06/
translating-big-data-proteomics-challenge。

 
《科學(xué)新聞》 (科學(xué)新聞2019年8月刊 科學(xué)·生命)
發(fā)E-mail給:      
| 打印 | 評論 |